Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism
نویسندگان
چکیده
Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG) are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca(2+) homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.
منابع مشابه
The Effect of Fibroblast Growth Factor 21 on a Cellular Model of Alzheimer's Disease with Emphasis on Cell Viability and Mitochondrial Membrane Potential
Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder which is associated with extracellular accumulation of amyloid beta (Aβ) plaques. AD is accompanied by mitochondrial dysfunction and energy metabolism reduction. Fibroblast growth factor 21 (FGF21) is an endogenous polypeptide which its beneficial effects have been demonstrated on mitochondrial function, energy m...
متن کاملجهش جدید هموپلاسمیک T4216C میتوکندریایی در افراد ایرانی مبتلا به بیماری فردریش اتاکسیا
Introduction: The mitochondrial defects in Friedreich ataxia (FRDA) have been reported in many researches. Friedreich ataxia is an autosomal recessive neurodegenerative disorder caused by decreased expression of the Frataxin protein. Frataxin deficiency leads to excessive free radical production and dysfunction of respiratory chain complexes. Mitochondrial DNA (mtDNA) could be considered as a c...
متن کاملSecondary abnormalities of mitochondrial DNA associated with neurodegeneration.
The central nervous system has a particularly high energy requirement, thus making it very susceptible to defects in mitochondrial function. A number of neurodegenerative diseases, in particular Parkinson's disease (PD), Huntington's disease (HD) and Friedreich's ataxia (FRDA), are associated with mitochondrial dysfunction. The identification of a mitochondrial complex-I defect in PD provides a...
متن کاملCaveolin‐1 deficiency induces premature senescence with mitochondrial dysfunction
Paradoxical observations have been made regarding the role of caveolin-1 (Cav-1) during cellular senescence. For example, caveolin-1 deficiency prevents reactive oxygen species-induced cellular senescence despite mitochondrial dysfunction, which leads to senescence. To resolve this paradox, we re-addressed the role of caveolin-1 in cellular senescence in human diploid fibroblasts, A549, HCT116,...
متن کاملAutophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans
Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Compl...
متن کامل